Synchronization of motor neurons during locomotion in the neonatal rat: predictors and mechanisms.
نویسندگان
چکیده
We describe here the robust synchronization of motor neurons at a millisecond time scale during locomotor activity in the neonatal rat. Action potential activity of motor neuron pairs was recorded extracellularly using tetrodes during locomotor activity in the in vitro neonatal rat spinal cord. Approximately 40% of motor neuron pairs recorded in the same spinal segment showed significant synchronization, with the duration of the central peak in cross-correlograms between motor neurons typically ranging between approximately 30 and 100 msec. The percentage of synchronized motor neuron pairs was considerably higher for pairs with similar locomotor-related activity and strong rhythmic modulation. We also found synchronization between the activities of different motor pools, even if located several segments apart. Such distant synchronization was abolished in the absence of chemical synapses, although local coupling between motor neurons persisted. On the other hand, both local and distant coupling between motor neurons were preserved after antagonism of gap junction coupling between motor neurons. These results demonstrate that motor neuron activity is strongly synchronized at a millisecond time scale during the production of locomotor activity in the neonatal rat. These results also demonstrate that chemical synaptic inputs, in addition to electrical synapses, contribute to this synchronization, suggesting the existence of multiple mechanisms underlying motor neuron synchronization in the neonatal rat. The fast synchronization described here might be involved in activity-dependent processes during development or in the coordination of individual motor neurons into a functional population underlying behavior.
منابع مشابه
Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملبررسی فعالیت حلقه های گاما دوک عضلانی و α-γ Linkage در دم موش (Rat)
Background and purpose : Muscle spindle is responsible for the control of skeletal muscle fibers function at rest and movement cycle, and is known as servo agent for voluntary movement. Function of this kinetic neceptor is completely dependent on the γ- ring activity would bring activity of la fiber and group ÏÏ spindle muscle afferent. Âlso, there is close functional of muscle relationship b...
متن کاملHypothermia and recovery from respiratory arrest in a neonatal rat in-vitro brainstem preparation
This study was designed to examine the possibility that respiratory arrest during hypothermia occurs at the level of premotor or motor neurons rather than at the level of the central rhythm generator itself. Specifically, we sought to determine the consequences of hypothermic cooling until respiratory arrest, and subsequent rewarming, on neurons in the pre-Bötzinger Complex, as an indication of...
متن کاملMalva sylvestris aqueous extract could ameliorate 6-hydroxydopamine-induced motor asymmetry with no protective effect on dopaminergic nigrostriatal neurons in the rat
Background and Objective: Parkinson’s disease (PD) is a common neurological disorder due to degeneration of dopaminergic neurons within pars compacta of substantia nigra (SNC). With regard to protective effect of Malva sylvestris (MS), this study was conducted to evaluate the effect of aquaeous extract of this plant in an experimental model of PD induced by 6-hydroxydopamine (6-OHDA). Material...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 22 شماره
صفحات -
تاریخ انتشار 2002